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Motivation

A causal inference framework allows us to define
many important questions in HIV

— Effects of longitudinal exposures
— Censoring dependent on time varying variables
— Effects of “dynamic” treatment strategies

* Answering these questions requires moving
beyond standard multivariable regression
— Inverse Probability Weighted Estimators (IPTW)
— Targeted Maximum Likelihood Estimators (TMLE)

* New R software implementing these estimators is
now available
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2. Why are more complex statistical methods
needed?

— Challenge of time-varying confounders

3. Overview of available estimators
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— Targeted Maximum Likelihood (TMLE)
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Overview: What types of questions
these methods can let us answer?

o Effects of longitudinal treatments

— Cumulative effect of multiple treatment decisions
or exposures over time

* Ex: Cumulative exposure to a specific ARV (Abacavir)
* Ex: Time to starting ART after HIV diagnosis

* Effects of dynamic treatments

— Strategies for assigning treatment in response to
patient characteristics
e Ex: Different CD4 thresholds for ART start

* Ex: Different CD4, clinical or viral load-based strategies
for defining 15t line failure and initiating switch



Overview: What types of questions
these methods can let us answer?

* Exposure effects when censoring can depend
on time-varying variables

— Ex: Patients who get sicker over course of study
more likely lost to follow up

e Effects on many types of outcomes
— At a single time point
e Ex: Survival at 12 months
— Repeated measures
* Ex: CD4 over time

— Time to event
e Ex: Survival time




Example: When to switch to second

line ART following virological failure?

* HIV can develop resistance to 15t line NNRTI-
based therapy quickly, resulting in HIV RNA

rebound (virological fai

* |n Africa, delayed switc
following virological fai

ure)
n to second line ART

ure is common

— Routine plasma viral load monitoring often

unavailable
— CD4 and clinical criteria

detect rebound poorly

* Clinical effect of delayed switch in resource-
limited settings not adequately quantified



Example 1: Point treatment

* Treatment: A

— A single treatment decision or an exposure at a single
time point

— Ex: Indicator if switched immediately (first visit failure
detected)

e Qutcome:Y

— Ex. Death within 1 quarter (3 months) after failure
* Counterfactual outcome: Outcome that would
have been observed under a specific treatment

— Ex: An individual’s vital status had she switched
immediately (in reality she may not have)




Example 1: Point treatment

e Example target quantity:

— Proportion of patients that would have died within
1 quarter if all had been switched immediately

e Can use this to define various effects

— Causal Risk Difference/Additive Treatment Effect

 Ex: Difference in the proportion who would have died
if all had been switched immediately versus if none
had been switched immediately

— Causal Relative Risk
— Causal Odds Ratio
— Etc...



Example 2: Longitudinal treatment

 Time point: t=1,...,K (end of study)

— Ex: quarterly intervals at which patients seen and
treatment decisions made

 Treatment: A(t), t=1,...,K
— Treatment decisions at multiple time points
— Ex: A(t)= Indicator if switched by time t
* A(1)=0, A(2)=0, A(3)=1, A(4)=1: switch at time 3
 Qutcome: Y(t), t=1,...,K

— Ex: Vital status at end of each interval




Example 2: Longitudinal treatment

e Example counterfactual outcome:
— An individual’s vital status at time t under a
specific switch time
 Example target quantity:

— The proportion of patients that would have died
within t time points had none switched at any

point
e Can again use this to define various effects

— Ex: Difference in the proportion that would died
within t time points had all switched immediately
vs. had none switched at any point




Example 3: Marginal Structural Models

 Model how the expected counterfactual outcome
varies as a function of treatment

— Can model survival or hazard for a single or multiple time
points

— For point or longitudinal treatments

* Ex: How counterfactual probability of death within 3
time points varies as a function of switch time

— Hypothetical randomized trial: Randomly assign subjects
with virological failure a switch time and measure their
survival

— Ex MSM: logit(E(Y(3).,itcn))=Bo + Byswitch time
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The methodological challenge

* For results to have causal interpretation, all
methods (including these) rely on untestable
assumptions

* We want
1. A clear understanding of those assumptions
— Study designs to optimize their plausibility

2. Statistical methods that give the best
possible answers given what we measure

— Standard parametric regression not sufficient



Time-dependent confounding

* Time varying variables can
1. Confound treatment-outcome relationships

2. Be affected by prior treatment
— Part of the causal pathway of interest
* How to analyze?

— |If we don’t adjust -> Bias

— |If we adjust using stratification or standard
multivariable regression -> Bias

* Similar issue when censoring depends on time
varying variables



Ex: Time-dependent confounding

Time-dependent

Baseline confounder
: confounder

Death

4
| CD4(t=2)

CD4(t=1)

Causal effect
of interest

Treatment (t=1) > Treatment (t=2)

« Can’t control for CD4(t=2) in standard
analyses: on causal pathway!
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Overview: IPTW

e Likelihood of the Observed Data

\P(Treatment & Censoring Past}) P(Other covariates | Past)

|

“Treatment Mechanism”

* IPTW

1. Estimate treatment mechanism

—How treatment (and/or censoring) depend
on the observed past

2. Use this estimate to reweight data




IPTW Properties

* Relies on doing a good job estimating
the weights
— If treatment mechanism estimated using a
misspecified model -> Bias
* Subject to bias and high variance with
moderate to strong confounding

— When certain treatment or exposure levels of
interest are rare/absent for some patient
histories



Overview: TMLE

e Likelihood of the Observed Data

\P(Exposure & Censoring | Past) P(Other covariates | Past)}
| |
“Treatment Mechanism” “Non- intervention component”
* TMLE
1. Estimate non-intervention component

2. Update this estimate to remove bias for
guantity you care about

— Update step uses estimate of treatment
mechanism




TMLE Properties

Minimize bias due to model
misspecification
— Double Robust - Two chances to get it “right”

* Consistent if you estimate either component correctly

Maximize precision of effect estimates

— Efficient (minimal asymptotic variance in semi-
parametric model) if you get both right

In practice (finite samples)

— May reduce bias and variance compared to IPTW
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Example 1: Point treatment

Simulated Data:
1d male age CD4 1 Al Y1

1 1 27 345 0 O
2 33 78 1 1
3 0 25 204 0 O
4 0 18 212 1 0
5 0 34 363 0 O
0 1 31 414 0 O

CD4_1: CD4 count at first visit failed

A1l: Indicator switched to second line ART at first visit
failed

Y1: Death by the end of first quarter after failure



Example 1: Point treatment

What proportion of patients who failed would
have died within one quarter if all had been
switched immediately?

Call:

ltmle (data, Anodes="Al"”, Ynodes="Y1", abar=1)

Output:
TMLE Estimate: 0.0294344



Example 1: Point treatment

* Additional outputs: IPTW and TMLE Estimates (95% Cl) for
proportion died under immediate switch (“est1”) and
proportion died under no immediate switch (“est0”)

> estl <- ltmle(data, Anodes="Al", Ynodes="Y1", abar=1)
> est0 <- ltmle(data, Anodes="Al", Ynodes="Y1", abar=0)

> summary (estl, estimator="tmle”)
Parameter Estimate: 0.029434
Estimated Variance: 0.000170
95% Conf Interval: (0.003832, 0.0550306)

> summary (estl, estimator="iptw”)
Parameter Estimate: 0.023879
Estimated Variance: 0.000147
95% Conf Interval: (5.0134e-05, 0.047708)



Example 1: Point treatment

e Additional outputs: Estimates and 95% ClI for risk

difference (additive effect)

— Difference in the proportion who would have died if all had
been switched immediately versus if none had been
switched immediately

> summary (estl, est0, estimator="tmle”)

Additive Effect:

Parameter Estimate: -0.11425

Estimated Variance: 0.0017416

p-value: 0.0061865
95% Conf Interval: (-0.19605, -0.032457)

* Also gives: relative risk, and odds ratio



Example 1: Point treatment

Results from simulated data:

Point Estimate - Truth

0.00 0.02 0.04 0.06

-0.02

TMLE

IPTW

Naive




Example 1: Point treatment

Point Estimate - Truth

What if the treatment mechanism is estimated using a

misspecified model?

ltmle (data, Anodes="Al", Ynodes="Y1", abar=1,
gform="Al ~ male + age")

— —_—

0.06

0.02
|

-0.02

TMLE IPTW Naive



Example 2: Longitudinal treatment

Simulated Data:
id male age CD4 1 Al Y1 CD4 2 AZ Y2 CD4 3 A3 Y3

1 0 37 101 1 O 152 1 0 228 1 0
2 0 31 301 0 O 297 0 O 302 0 O
3 1 31 323 0 O 351 1 O 395 1 O
4 0 26 29 1 0 81 1 O 124 1 1
5 0 23 280 0 O 315 0 O 321 0 O
6 1 43 237 1 1 NA NA 1 NA NA 1

CD4 _t: CD4 count at start of quarter t

At: switched to second line at or before start of
quarter t

Yt: death by end of quarter t



Example 2: Longitudinal treatment

What proportion of patients would have died
within 3 quarters had none switched?

Call:

ltmle (data, Anodes=c ("Al"™, "A2", "A3"),
YnOdeS:C("Yln, "YZH, "Y3") ,

abar=c (0, 0, 0))

Output:
TMLE Estimate: 0.1546657



Example 2: Longitudinal treatment

Results from simulated data:

0.2

0.1

0.0

Point Estimate - Truth

0.1

-0.2

TMLE IPTW Naive



Example 3: Marginal Structural Model

* How does counterfactual probability of dying within 3
guarters vary as function of switch time?

— MSM: logit(E(Y3,,in))=Bo + Byswitch time
Call:

ltmleMSM (data, Anodes=c ("Al”, "A2"”,"A3"),
YDOdeS:C("Yl", "YZH, "YB") ,

working.msm="Y ~ switch.time”,
regimens=regimens,

Summary.measures=sulnmary. measures)

Output:
(Intercept) switch.time
-2.733044 0.418045
N Y4 OR per additional quarter

B, estimate B estimate:  until switch = exp(0.418) = 1.52



Example 3: Marginal Structural Model

Point Estimate - Truth

Results from simulated data:

0.2

-0.2

-0.6

TMLE IPTW



Take home points

* Applying these methods to answer real
guestions with real data

1. Can give you better answers

2. |Is feasible
— Software is available

3. Mastery not possible in 45 minutes

— We are showing simple calls for simplified data
 Using default for many options

— Software has substantial additional functionality
* Look for upcoming training workshop!
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R package: ltmle

Casual effect estimation with multiple intervention nodes

— Intervention-specific mean under longitudinal static and
dynamic interventions

— Static and dynamic marginal structural models
General longitudinal data structures

— Repeated measures outcomes

— Right censoring

Estimators

— IPTW

— Non-targeted MLE

— TMLE (two algorithms for MSM)

Options include nuisance parameter estimation via glm
regression formulas or calling SuperLearner()

Available on CRAN April 2013



